
PolicyGlass
Release 0.8.0

Sam Martin

Jan 09, 2022

INDEX

1 Use Cases 3

2 Why do I need PolicyGlass? 5

3 Examples of PolicyShards 7
3.1 Simple . 7
3.2 De-duplicate . 8
3.3 Deny Not Resource Policy . 9

4 Examples of Policy Analysis 13
4.1 Example Policy . 13

5 Class Reference 17
5.1 Policy . 17
5.2 Policy Shard . 18
5.3 Statement . 23
5.4 Action . 25
5.5 Resource . 25
5.6 Principal . 26
5.7 Condition . 27
5.8 Understanding Effective Conditions . 31
5.9 Understanding Effective Actions . 32
5.10 Understanding Policy Shards . 36

6 PolicyGlass 39
6.1 Try it out . 39
6.2 Installation . 40
6.3 Usage . 40

Python Module Index 43

Index 45

i

ii

PolicyGlass, Release 0.8.0

PolicyGlass is an effective permission parser for AWS Policies. It takes normal JSON policies of any type (Principal,
Resource, or Endpoint) and converts them into PolicyShard objects that are always assertions about what is allowed.

INDEX 1

PolicyGlass, Release 0.8.0

2 INDEX

CHAPTER

ONE

USE CASES

There are two main use cases for this tool:

1. Writing tools that audit the permissions provided to AWS resources/principals

2. Validating your understanding of the complex policy you’re writing.

3

PolicyGlass, Release 0.8.0

4 Chapter 1. Use Cases

CHAPTER

TWO

WHY DO I NEED POLICYGLASS?

Isn’t this a simple problem? I can just check actions and resources in each statement, boom, done.

Understanding AWS policies programmatically is harder than it looks.

You can write code easily enough to check what resources and actions are in each statement, and that might seem like
enough. But what happens when you throw a Deny statement into the mix? Well that’s okay, you just check each
statement to see if it’s an allow or a deny and if it’s a deny then you just remove any resources from the allow that
exist in the deny right? Easy enough, but what about resources that are just * or are ARNs with wildcards in them?
Once you’ve got past that, you have to deal with statements that contain negations (NotAction, NotResource, and
NotPrincipal), it’s starting to get harder. Then you have to add in the complexity of conditions, and all this is without
even mentioning the complexity of parsing an AWS Policy in the first place with the variants of Actions as a list or
as a string, or Resources that may be a string or a dictionary.

PolicyGlass takes care of all this for you by breaking down a policy into its components and applying set operations in
order to build shards that describe the effective permissions.

5

PolicyGlass, Release 0.8.0

6 Chapter 2. Why do I need PolicyGlass?

CHAPTER

THREE

EXAMPLES OF POLICYSHARDS

Below you can find some examples on how PolicyGlass can be used to understand complex policies in a consistent
way.

We’re going to use policy_shards_to_json() to make the output a bit easier to read.

Tip: Remember PolicyShard objects are not policies. They represent policies in an abstracted way that makes them
easier to understand programmatically, the JSON output you see in the examples is not a policy you can use directly in
AWS.

3.1 Simple

>>> from policyglass import Policy, dedupe_policy_shards, policy_shards_effect, policy_
→˓shards_to_json
>>> policy_a = Policy(**{
... "Version": "2012-10-17",
... "Statement": [
... {
... "Effect": "Allow",
... "Action": [
... "s3:*"
...],
... "Resource": "*"
... }
...]
... })
>>> policy_b = Policy(**{
... "Version": "2012-10-17",
... "Statement": [
... {
... "Effect": "Deny",
... "Action": [
... "s3:*"
...],
... "Resource": "arn:aws:s3:::examplebucket/*"
... }
...]
... })

(continues on next page)

7

PolicyGlass, Release 0.8.0

(continued from previous page)

>>> policy_shards = policy_shards_effect([*policy_a.policy_shards, *policy_b.policy_
→˓shards])
>>> print(policy_shards_to_json(policy_shards, exclude_defaults=True, indent=2))
[

{
"effective_action": {
"inclusion": "s3:*"

},
"effective_resource": {
"inclusion": "*",
"exclusions": [
"arn:aws:s3:::examplebucket/*"

]
},
"effective_principal": {
"inclusion": {
"type": "AWS",
"value": "*"

}
}

}
]

PolicyShard #1 (first dictonary in list) tells us:

1. s3:* is allowed for all resources except arn:aws:s3:::examplebucket/*

What occurred:

1. The resource from the deny was added to the allow’s EffectiveResource’s exclusions

3.2 De-duplicate

>>> from policyglass import Policy, dedupe_policy_shards, policy_shards_to_json
>>> policy_a = Policy(**{
... "Version": "2012-10-17",
... "Statement": [
... {
... "Effect": "Allow",
... "Action": [
... "s3:*"
...],
... "Resource": "*"
... }
...]
... })
>>> policy_b = Policy(**{
... "Version": "2012-10-17",
... "Statement": [
... {
... "Effect": "Allow",
... "Action": [

(continues on next page)

8 Chapter 3. Examples of PolicyShards

PolicyGlass, Release 0.8.0

(continued from previous page)

... "s3:*"

...],

... "Resource": "*"

... }

...]

... })
>>> policy_shards = dedupe_policy_shards([*policy_a.policy_shards, *policy_b.policy_
→˓shards])
>>> print(policy_shards_to_json(policy_shards, exclude_defaults=True, indent=2))
[

{
"effective_action": {
"inclusion": "s3:*"

},
"effective_resource": {
"inclusion": "*"

},
"effective_principal": {
"inclusion": {
"type": "AWS",
"value": "*"

}
}

}
]

PolicyShard #1 (first dictonary in list) tells us:

1. s3:* is allowed on all resources.

What occurred:

1. One of the two s3:* policy shards was removed because it was a duplicate.

3.3 Deny Not Resource Policy

>>> from policyglass import Policy, policy_shards_effect, policy_shards_to_json
>>> policy_a = Policy(**{
... "Version": "2012-10-17",
... "Statement": [
... {
... "Effect": "Allow",
... "Action": [
... "s3:*",
... "s3:GetObject"
...],
... "Resource": "*"
... },
... {
... "Effect": "Deny",
... "Action": [
... "s3:*",

(continues on next page)

3.3. Deny Not Resource Policy 9

PolicyGlass, Release 0.8.0

(continued from previous page)

...],

... "NotResource": "arn:aws:s3:::examplebucket/*",

... "Condition": {

... "StringNotEquals": {

... "s3:x-amz-server-side-encryption": "AES256"

... }

... }

... }

...]

... })
>>> shards_effect = policy_shards_effect(policy_a.policy_shards)
>>> print(policy_shards_to_json(shards_effect, exclude_defaults=True, indent=2))
[

{
"effective_action": {
"inclusion": "s3:*"

},
"effective_resource": {
"inclusion": "arn:aws:s3:::examplebucket/*"

},
"effective_principal": {
"inclusion": {
"type": "AWS",
"value": "*"

}
}

},
{
"effective_action": {
"inclusion": "s3:*"

},
"effective_resource": {
"inclusion": "*",
"exclusions": [
"arn:aws:s3:::examplebucket/*"

]
},
"effective_principal": {
"inclusion": {
"type": "AWS",
"value": "*"

}
},
"effective_condition": {
"inclusions": [
{
"key": "s3:x-amz-server-side-encryption",
"operator": "StringEquals",
"values": [
"AES256"

]
}

(continues on next page)

10 Chapter 3. Examples of PolicyShards

PolicyGlass, Release 0.8.0

(continued from previous page)

]
}

}
]

The output has two policy shards.

PolicyShard #1 (first dictionary in list) tells us:

1. Allow s3:*

2. On arn:aws:s3:::examplebucket/*

3. No conditions

PolicyShard #2 (second dictionary in list) tells us:

1. Allow s3:*

2. On all resources

3. If the condition applies.

What occurred:

1. s3:GetObject was removed from the allow because it was totally within s3:*

2. A new PolicyShard was created with s3:*

3. The deny’s condition got reversed from StringNotEquals to StringEquals and added to the new
allow PolicyShard.

3.3. Deny Not Resource Policy 11

PolicyGlass, Release 0.8.0

12 Chapter 3. Examples of PolicyShards

CHAPTER

FOUR

EXAMPLES OF POLICY ANALYSIS

4.1 Example Policy

Let’s use a complex IAM policy as our example to demonstrate the value in analyzing policies with PolicyGlass.

>>> from policyglass import Policy
>>> test_policy = Policy(**{
... "Version": "2012-10-17",
... "Statement": [
... {
... "Effect": "Allow",
... "Action": [
... "s3:*"
...],
... "Resource": "*",
... "Condition": {
... "NumericLessThan": {
... "s3:TlsVersion": 1.2
... }
... }
... },
... {
... "Effect": "Allow",
... "Action": [
... "s3:*"
...],
... "Resource": "arn:aws:s3:::examplebucket/*"
... },
... {
... "Effect": "Deny",
... "Action": [
... "s3:PutObject"
...],
... "NotResource": "arn:aws:s3:::examplebucket/*",
... "Condition": {
... "StringNotEquals": {
... "s3:x-amz-server-side-encryption": "AES256"
... }
... }
... }

(continues on next page)

13

PolicyGlass, Release 0.8.0

(continued from previous page)

...]

... })

4.1.1 Understanding a Policy

To understand the policy, let’s get the policy_shards_effect() then use the explain_policy_shards()method
to explain them.

>>> from policyglass import policy_shards_effect, explain_policy_shards
>>> test_policy_shards = policy_shards_effect(test_policy.policy_shards)
>>> explain_policy_shards(test_policy_shards)
["Allow action s3:PutObject on resource * (except for arn:aws:s3:::examplebucket/*) with␣
→˓principal AWS *.

Provided conditions s3:TlsVersion NumericLessThan ['1.2'] and s3:x-amz-server-side-
→˓encryption StringEquals ['AES256'] are met.",
"Allow action s3:* (except for s3:PutObject) on resource * (except for␣
→˓arn:aws:s3:::examplebucket/*) with principal AWS *.

Provided conditions s3:TlsVersion NumericLessThan ['1.2'] are met.",
'Allow action s3:* on resource arn:aws:s3:::examplebucket/* with principal AWS *.']

That helps clarify what the policy results in for humans. But what if we want to programatically ask a question about
what this allows?

4.1.2 Interrogating a Policy

Question: Is s3:PutObject allowed on arn:aws:s3:::some-other-bucket/*?

To answer this we need to check 2 things:

1. Is s3:PutObject allowed on the shard?

2. If so, is resource arn:aws:s3:::examplebucket/* allowed on the same shard?

As we have multiple (3) shards we have to make sure both of the answers are true for the same shard.

We can do this with a list comprehension and utilise the in operator to check that the EffectiveAction contains
s3:PutObject and that the EffectiveResource contains arn:aws:s3:::some-other-bucket/*.

>>> from policyglass import Action, Resource
>>> action = Action('s3:PutObject')
>>> resource = Resource('arn:aws:s3:::some-other-bucket/*')
>>> result = [
... shard
... for shard in test_policy_shards
... if action in shard.effective_action
... and resource in shard.effective_resource
...]
>>> result
[PolicyShard(effect='Allow',

effective_action=EffectiveAction(inclusion=Action('s3:PutObject'),␣
→˓exclusions=frozenset()),

effective_resource=EffectiveResource(inclusion=Resource('*'), exclusions=frozenset(
→˓{Resource('arn:aws:s3:::examplebucket/*')})),

(continues on next page)

14 Chapter 4. Examples of Policy Analysis

PolicyGlass, Release 0.8.0

(continued from previous page)

effective_principal=EffectivePrincipal(inclusion=Principal(type='AWS', value='*'),␣
→˓exclusions=frozenset()),

effective_condition=EffectiveCondition(inclusions=frozenset({Condition(key='s3:x-amz-
→˓server-side-encryption', operator='StringEquals', values=['AES256']),

Condition(key='s3:TlsVersion', operator='NumericLessThan', values=['1.2'])}),
exclusions=frozenset()))]

From this check we can see that it is allowed by at least one shard! But there are two conditions.

4.1.3 Checking if Conditions exist

Whether we want to check these conditions depends on what kind of question we want to ask. Either way it’s trivial to
check if a condition exists or not.

>>> bool(result[0].effective_condition)
True

4.1. Example Policy 15

PolicyGlass, Release 0.8.0

16 Chapter 4. Examples of Policy Analysis

CHAPTER

FIVE

CLASS REFERENCE

5.1 Policy

Core Policy class.

class Policy(*, Version=None, Statement)
Main policy class.

Example

Create a policy from a dictionary.

>>> from policyglass import Policy
>>> Policy(**{
... "Version": "2012-10-17",
... "Statement": [
... {
... "Effect": "Allow",
... "Action": [
... "s3:*"
...],
... "Resource": "*"
... }
...]
... })
Policy(version='2012-10-17',

statement=[Statement(effect='Allow',
action=[Action('s3:*')],
not_action=None,
resource=[Resource('*')],
not_resource=None, principal=None,
not_principal=None,
condition=None)])

Parameters

• Version (str) –

• Statement (List[policyglass.statement.Statement]) –

Return type None

17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

PolicyGlass, Release 0.8.0

policy_json()
Return a valid policy JSON from this policy.

Return type str

property policy_shards: List[policyglass.policy_shard.PolicyShard]
Shatter this policy into a number policyglass.policy_shard objects.

statement: List[policyglass.statement.Statement]

version: Optional[str]

5.2 Policy Shard

PolicyShards are a simplified representation of policies.

class PolicyShard(effect, effective_action, effective_resource, effective_principal, effective_condition=None)
A PolicyShard is part of a policy broken down in such a way that it can be deduplicated and collapsed.

Parameters

• effect (str) –

• effective_action (policyglass.effective_arp.EffectiveARP[policyglass.
action.Action]) –

• effective_resource (policyglass.effective_arp.
EffectiveARP[policyglass.resource.Resource]) –

• effective_principal (policyglass.effective_arp.
EffectiveARP[policyglass.principal.Principal]) –

• effective_condition (policyglass.condition.EffectiveCondition) –

Return type None

class Config
Pydantic Config.

json_encoders = {<class 'policyglass.action.EffectiveAction'>: <function
PolicyShard.Config.<lambda>>, <class 'policyglass.resource.EffectiveResource'>:
<function PolicyShard.Config.<lambda>>, <class
'policyglass.principal.EffectivePrincipal'>: <function
PolicyShard.Config.<lambda>>}

__init__(effect, effective_action, effective_resource, effective_principal, effective_condition=None)
Initialize a PolicyShard object.

Parameters

• effect (str) – ‘Allow’ or ‘Deny’

• effective_action (policyglass.effective_arp.EffectiveARP[policyglass.
action.Action]) – The EffectiveAction that this PolicyShard allows or denies

• effective_resource (policyglass.effective_arp.
EffectiveARP[policyglass.resource.Resource]) – The EffectiveResource
that this PolicyShard allows or denies

• effective_principal (policyglass.effective_arp.
EffectiveARP[policyglass.principal.Principal]) – The EffectivePrincipal
that this PolicyShard allows or denies

18 Chapter 5. Class Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

PolicyGlass, Release 0.8.0

• effective_condition (Optional[policyglass.condition.
EffectiveCondition]) – The EffectiveCondition that needs to be met for this
PolicyShard to apply

Return type None

dict(*args, **kwargs)
Convert instance to dict representation of it.

Parameters

• *args – Arguments to Pydantic dict method.

• **kwargs – Arguments to Pydantic dict method.

Return type Dict[str, Any]

Overridden from BaseModel so that when converting conditions to dict they don’t suffer from being un-
hashable when placed in a set.

difference(other, dedupe_result=True)
Calculate the difference between this and another object of the same type.

Effectively subtracts the inclusions of other from self. This is useful when applying denies (other) to
allows (self).

Parameters

• other (object) – The object to subtract from this one.

• dedupe_result (bool) – Whether to deduplicate the resulting PolicyShards or not. Set-
ting this to False will lead to many duplicates.

Raises ValueError – If other is not the same type as this object.

Return type List[policyglass.policy_shard.PolicyShard]

effect: str

effective_action: policyglass.effective_arp.EffectiveARP[policyglass.action.Action]

effective_condition: policyglass.condition.EffectiveCondition

effective_principal:
policyglass.effective_arp.EffectiveARP[policyglass.principal.Principal]

effective_resource:
policyglass.effective_arp.EffectiveARP[policyglass.resource.Resource]

property explain: str
Return a plain English representation of the policy shard.

Example

Simple PolicyShard explain.

>>> from policyglass import Policy
>>> policy = Policy(**{"Statement": [{"Effect": "Allow", "Action": "s3:*"}]})
>>> print([shard.explain for shard in policy.policy_shards])
['Allow action s3:* on resource * with principal AWS *.']

intersection(other)
Calculate the intersection between this object and another object of the same type.

5.2. Policy Shard 19

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PolicyGlass, Release 0.8.0

Parameters other (object) – The object to intersect with this one.

Raises ValueError – if other is not the same type as this object.

Return type Optional[policyglass.policy_shard.PolicyShard]

issubset(other)
Whether this object contains all the elements of another object (i.e. is a subset of the other object).

Conditions: If both PolicyShards have conditions but are otherwise identical, self will be a subset of other
if the other’s conditions are are a subset of self’s as this means that self is more restrictive and therefore
carves out a subset of possiblilites in comparison with other.

Parameters other (object) – The object to determine if our object contains.

Raises ValueError – If the other object is not of the same type as this object.

Return type bool

union(other)
Combine this object with another object of the same type.

Parameters other (object) – The object to combine with this one.

Raises ValueError – If other is not the same type as this object.

Return type List[policyglass.policy_shard.PolicyShard]

dedupe_policy_shard_subsets(shards, check_reverse=True)
Dedupe policy shards that are subsets of each other.

Parameters

• shards (Iterable[policyglass.policy_shard.PolicyShard]) – The shards to
deduplicate.

• check_reverse (bool) – Whether you want to check these shards in reverse as well (only
disabled when alling itself).

Return type List[policyglass.policy_shard.PolicyShard]

dedupe_policy_shards(shards, check_reverse=True)
Dedupe policy shards that are subsets of each other and remove intersections.

Parameters

• shards (Iterable[policyglass.policy_shard.PolicyShard]) – The shards to
deduplicate.

• check_reverse (bool) – Whether you want to check these shards in reverse as well (only
disabled when calling itself).

Return type List[policyglass.policy_shard.PolicyShard]

explain_policy_shards(shards, language='en')
Return a list of string explanations for a given list of PolicyShards.

20 Chapter 5. Class Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PolicyGlass, Release 0.8.0

Example

How to get the effective permissions of a policy as a plain English explanation.

>>> from policyglass import Policy, policy_shards_effect, explain_policy_shards
>>> policy = Policy(
... **{
... "Version": "2012-10-17",
... "Statement": [
... {
... "Effect": "Allow",
... "Action": ["s3:*"],
... "Resource": "*",
... },
... {
... "Effect": "Deny",
... "Action": ["s3:Get*"],
... "Resource": "*",
... },
...],
... }
...)
>>> explain_policy_shards(policy_shards_effect(policy.policy_shards))
['Allow action s3:* (except for s3:Get*) on resource * with principal AWS *.']

Parameters

• shards (List[policyglass.policy_shard.PolicyShard]) – The PolicyShards to ex-
plain.

• language (str) – The language of the explanation

Raises NotImplementedError – When an unsupported language is requested.

Return type List[str]

policy_shards_effect(shards)
Calculate the effect of merging allow and deny shards together.

Example

How to get the effective permissions of a policy as PolicyShard objects.

>>> from policyglass import Policy, policy_shards_effect, explain_policy_shards
>>> policy = Policy(
... **{
... "Version": "2012-10-17",
... "Statement": [
... {
... "Effect": "Allow",
... "Action": ["s3:*"],
... "Resource": "*",
... },
... {

(continues on next page)

5.2. Policy Shard 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/stdtypes.html#str

PolicyGlass, Release 0.8.0

(continued from previous page)

... "Effect": "Deny",

... "Action": ["s3:Get*"],

... "Resource": "*",

... },

...],

... }

...)
>>> policy_shards = policy.policy_shards
>>> policy_shards_effect(policy_shards)
[PolicyShard(effect='Allow',

effective_action=EffectiveAction(inclusion=Action('s3:*'),
exclusions=frozenset({Action('s3:Get*')})),

effective_resource=EffectiveResource(inclusion=Resource('*'),
exclusions=frozenset()),

effective_principal=EffectivePrincipal(inclusion=Principal(type='AWS', value='*
→˓'),

exclusions=frozenset()),
effective_condition=EffectiveCondition(inclusions=frozenset(),

exclusions=frozenset()))]

Parameters shards (List[policyglass.policy_shard.PolicyShard]) – The shards to ca-
clulate the effect of.

Return type List[policyglass.policy_shard.PolicyShard]

policy_shards_to_json(shards, exclude_defaults=False, **kwargs)
Convert a list of PolicyShard objects to JSON.

Example

How to get the effective permissions of a policy as json.

>>> from policyglass import Policy, policy_shards_effect, policy_shards_to_json
>>> policy = Policy(
... **{
... "Version": "2012-10-17",
... "Statement": [
... {
... "Effect": "Allow",
... "Action": ["s3:*"],
... "Resource": "*",
... },
... {
... "Effect": "Deny",
... "Action": ["s3:Get*"],
... "Resource": "*",
... },
...],
... }
...)
>>> policy_shards = policy.policy_shards

(continues on next page)

22 Chapter 5. Class Reference

PolicyGlass, Release 0.8.0

(continued from previous page)

>>> output = policy_shards_to_json(
... policy_shards_effect(policy_shards),
... indent=2,
... exclude_defaults=True
...)
>>> print(output)
[

{
"effective_action": {

"inclusion": "s3:*",
"exclusions": [

"s3:Get*"
]

},
"effective_resource": {

"inclusion": "*"
},
"effective_principal": {

"inclusion": {
"type": "AWS",
"value": "*"

}
}

}
]

Parameters

• shards (List[policyglass.policy_shard.PolicyShard]) – The list of shards to con-
vert.

• exclude_defaults – Whether to exclude default values (e.g. empty lists) from the output.

• **kwargs – keyword arguments passed on to json.dumps()

Return type str

5.3 Statement

Statement class.

class Effect
Allow or Deny.

class Statement(*, Effect, Action=None, NotAction=None, Resource=None, NotResource=None,
Principal=None, NotPrincipal=None, Condition=None)

A Policy Statement.

Parameters

• Effect (policyglass.statement.Effect) –

• Action (List[policyglass.action.Action]) –

• NotAction (List[policyglass.action.Action]) –

5.3. Statement 23

https://docs.python.org/3/library/json.html#json.dumps
https://docs.python.org/3/library/stdtypes.html#str

PolicyGlass, Release 0.8.0

• Resource (List[policyglass.resource.Resource]) –

• NotResource (List[policyglass.resource.Resource]) –

• Principal (policyglass.principal.PrincipalCollection) –

• NotPrincipal (policyglass.principal.PrincipalCollection) –

• Condition (policyglass.condition.RawConditionCollection) –

Return type None

class Config
Configure the Pydantic BaseModel.

alias_generator()
Convert a snake_case string into a PascalCase string.

Parameters string (str) – The string to convert to PascalCase.
Return type str

action: Optional[List[policyglass.action.Action]]

condition: Optional[policyglass.condition.RawConditionCollection]

effect: policyglass.statement.Effect

classmethod ensure_action_list(v)

Parameters v (policyglass.statement.T) –

Return type List[policyglass.action.Action]

classmethod ensure_condition_value_list(v)

Parameters v (Dict[policyglass.condition.ConditionKey, Dict[policyglass.
condition.ConditionOperator, Union[policyglass.condition.
ConditionValue, List[policyglass.condition.ConditionValue]]]]) –

Return type policyglass.condition.RawConditionCollection

classmethod ensure_principal_dict(v)

Parameters v (Union[policyglass.principal.PrincipalValue,
Dict[policyglass.principal.PrincipalType, Union[policyglass.
principal.PrincipalValue, List[policyglass.principal.
PrincipalValue]]]]) –

Return type policyglass.principal.PrincipalCollection

classmethod ensure_resource_list(v)

Parameters v (policyglass.statement.T) –

Return type List[policyglass.resource.Resource]

not_action: Optional[List[policyglass.action.Action]]

not_principal: Optional[policyglass.principal.PrincipalCollection]

not_resource: Optional[List[policyglass.resource.Resource]]

policy_json()

24 Chapter 5. Class Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PolicyGlass, Release 0.8.0

Return type str

property policy_shards: List[policyglass.policy_shard.PolicyShard]

principal: Optional[policyglass.principal.PrincipalCollection]

resource: Optional[List[policyglass.resource.Resource]]

5.4 Action

Action class.

class Action
Actions are case insensitive.

“The prefix and the action name are case insensitive”

—IAM JSON policy elements: Action

issubset(other)
Whether this object contains all the elements of another object (i.e. is a subset of the other object).

Parameters other (object) – The object to determine if our object contains.

Raises ValueError – If the other object is not of the same type as this object.

Return type bool

class EffectiveAction(inclusion, exclusions=None)
EffectiveActions are the representation of the difference between an Action and its exclusion.

The allowed actions is the difference (subtraction) of the excluded Actions from the included action.

exclusions: FrozenSet[policyglass.effective_arp.T]
Exclusions must always be a subset of the include and must not be subsets of each other

inclusion: policyglass.effective_arp.T
Inclusion must be a superset of any exclusions

5.5 Resource

Resource class.

class EffectiveResource(inclusion, exclusions=None)
EffectiveResources are the representation of the difference between an Resource and its exclusion.

The allowed Resource is the difference (subtraction) of the excluded Resources from the included Resource.

exclusions: FrozenSet[policyglass.effective_arp.T]
Exclusions must always be a subset of the include and must not be subsets of each other

inclusion: policyglass.effective_arp.T
Inclusion must be a superset of any exclusions

class Resource
A resource ARN may be case sensitive or case insensitive depending on the resource type.

property arn_elements: List[str]
Return a list of arn elements, replacing blanks with *.

5.4. Action 25

https://docs.python.org/3/library/stdtypes.html#str
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_action.html
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PolicyGlass, Release 0.8.0

issubset(other)
Whether this object contains all the elements of another object (i.e. is a subset of the other object).

Parameters other (object) – The object to determine if our object contains.

Raises ValueError – If the other object is not of the same type as this object.

Return type bool

5.6 Principal

Principal classes.

class EffectivePrincipal(inclusion, exclusions=None)
EffectivePrincipals are the representation of the difference between an Principal and its exclusion.

The allowed Principal is the difference (subtraction) of the excluded Principals from the included Principal.

exclusions: FrozenSet[policyglass.effective_arp.T]
Exclusions must always be a subset of the include and must not be subsets of each other

inclusion: policyglass.effective_arp.T
Inclusion must be a superset of any exclusions

class Principal(type, value)
A class which represents a single Principal including its type.

Objects of this type are typically generated by the Statement class.

Parameters

• type (policyglass.principal.PrincipalType) –

• value (policyglass.principal.PrincipalValue) –

Return type None

__init__(type, value)
Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

Parameters

• type (policyglass.principal.PrincipalType) –

• value (policyglass.principal.PrincipalValue) –

Return type None

property account_id: Optional[str]
Return the account id of this Principal if there is one.

property arn_elements: List[str]
Return a list of arn elements, replacing blanks with "".

property is_account: bool
Return true if the prinncipal is an account.

issubset(other)
Whether this object contains all the elements of another object (i.e. is a subset of the other object).

Parameters other (object) – The object to determine if our object contains.

Raises ValueError – If the other object is not of the same type as this object.

26 Chapter 5. Class Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#ValueError

PolicyGlass, Release 0.8.0

Return type bool

type: policyglass.principal.PrincipalType
Principal Type

value: policyglass.principal.PrincipalValue
Principal value

class PrincipalCollection
A collection of Principals of different types, unique to PolicyGlass.

property principals: List[policyglass.principal.Principal]

class PrincipalType
A principal type, e.g. Federated or AWS.

See AWS JSON policy elements: Principal for more.

class PrincipalValue
An ARN, wildcard, or other appropriate value of a policy Principal.

See AWS JSON policy elements: Principal for more.

5.7 Condition

Statement Condition classes.

class Condition(key, operator, values)
A representation of part of a statement condition in order to facilitate comparison.

Parameters

• key (policyglass.condition.ConditionKey) –

• operator (policyglass.condition.ConditionOperator) –

• values (List[policyglass.condition.ConditionValue]) –

Return type None

__init__(key, operator, values)
Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

Parameters

• key (policyglass.condition.ConditionKey) –

• operator (policyglass.condition.ConditionOperator) –

• values (List[policyglass.condition.ConditionValue]) –

Return type None

classmethod factory(condition_collection)

Parameters condition_collection (policyglass.condition.
RawConditionCollection) –

Return type FrozenSet[policyglass.condition.Condition]

key: policyglass.condition.ConditionKey

5.7. Condition 27

https://docs.python.org/3/library/functions.html#bool
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

PolicyGlass, Release 0.8.0

operator: policyglass.condition.ConditionOperator

property reverse: policyglass.condition.Condition
Return a new condition which is the opposite of this condition.

Raises ValueError – If the operator is a type that cannot be reversed.

values: List[policyglass.condition.ConditionValue]

class ConditionKey
Condition Keys are case insensitive.

“Condition key names are not case-sensitive.” - IAM Reference Policy Elements

class ConditionOperator
Condition Operator.

See IAM JSON policy elements: Condition operators for more.

class ConditionValue
Condition values may or may not be case sensitive depending on the operator.

class EffectiveCondition(inclusions=None, exclusions=None)
A pair of sets for inclusions and exclusion conditions.

Parameters

• inclusions (FrozenSet[policyglass.condition.Condition]) –

• exclusions (FrozenSet[policyglass.condition.Condition]) –

Return type None

__init__(inclusions=None, exclusions=None)
Convert exclusions to inclusions if possible.

The only type of Condition that really exists in AWS policies is the inclusions. The exclusions are
created only when conditions on a Deny statement have operators that cannot be reversed. The reversal is
required in order to fold a Deny condition into an Allow condition.

Parameters

• inclusions (Optional[FrozenSet[policyglass.condition.Condition]]) –
The conditions that must be met.

• exclusions (Optional[FrozenSet[policyglass.condition.Condition]]) –
The conditions that must NOT be met.

Return type None

dict(*args, **kwargs)
Convert instance to dict representation of it.

Parameters

• *args – Arguments to Pydantic dict method.

• **kwargs – Arguments to Pydantic dict method.

Return type Dict[str, Any]

Overridden from BaseModel so that when converting conditions to dict they don’t suffer from being un-
hashable when placed in a set.

exclusions: FrozenSet[policyglass.condition.Condition]
Conditions which must NOT be met

28 Chapter 5. Class Reference

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

PolicyGlass, Release 0.8.0

inclusions: FrozenSet[policyglass.condition.Condition]
Conditions which must be met

intersection(other)
Calculate the intersection between this object and another object of the same type.

Parameters other (object) – The object to intersect with this one.

Raises ValueError – if other is not the same type as this object.

Return type policyglass.condition.EffectiveCondition

property reverse: policyglass.condition.EffectiveCondition
Reverse the effect of this EffectiveCondition.

union(other)
Combine this object with another object of the same type.

Parameters other (object) – The object to combine with this one.

Raises ValueError – If other is not the same type as this object.

Return type policyglass.condition.EffectiveCondition

5.7. Condition 29

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#ValueError

PolicyGlass, Release 0.8.0

OPERATOR_REVERSAL_INDEX = {ConditionOperator('ArnEquals'):
ConditionOperator('ArnNotEquals'), ConditionOperator('ArnEqualsIfExists'):
ConditionOperator('ArnNotEqualsIfExists'), ConditionOperator('ArnLike'):
ConditionOperator('ArnNotLike'), ConditionOperator('ArnLikeIfExists'):
ConditionOperator('ArnNotLikeIfExists'), ConditionOperator('ArnNotEquals'):
ConditionOperator('ArnEquals'), ConditionOperator('ArnNotEqualsIfExists'):
ConditionOperator('ArnEqualsIfExists'), ConditionOperator('ArnNotLike'):
ConditionOperator('ArnLike'), ConditionOperator('ArnNotLikeIfExists'):
ConditionOperator('ArnLikeIfExists'), ConditionOperator('DateEquals'):
ConditionOperator('DateNotEquals'), ConditionOperator('DateEqualsIfExists'):
ConditionOperator('DateNotEqualsIfExists'), ConditionOperator('DateGreaterThan'):
ConditionOperator('DateLessThanEquals'), ConditionOperator('DateGreaterThanEquals'):
ConditionOperator('DateLessThan'), ConditionOperator('DateGreaterThanEqualsIfExists'):
ConditionOperator('DateLessThanIfExists'), ConditionOperator('DateGreaterThanIfExists'):
ConditionOperator('DateLessThanEqualsIfExists'), ConditionOperator('DateLessThan'):
ConditionOperator('DateGreaterThanEquals'), ConditionOperator('DateLessThanEquals'):
ConditionOperator('DateGreaterThan'), ConditionOperator('DateLessThanEqualsIfExists'):
ConditionOperator('DateGreaterThanIfExists'), ConditionOperator('DateLessThanIfExists'):
ConditionOperator('DateGreaterThanEqualsIfExists'), ConditionOperator('DateNotEquals'):
ConditionOperator('DateEquals'), ConditionOperator('DateNotEqualsIfExists'):
ConditionOperator('DateEqualsIfExists'), ConditionOperator('IpAddress'):
ConditionOperator('NotIpAddress'), ConditionOperator('IpAddressIfExists'):
ConditionOperator('NotIpAddressIfExists'), ConditionOperator('NotIpAddress'):
ConditionOperator('IpAddress'), ConditionOperator('NotIpAddressIfExists'):
ConditionOperator('IpAddressIfExists'), ConditionOperator('NumericEquals'):
ConditionOperator('NumericNotEquals'), ConditionOperator('NumericEqualsIfExists'):
ConditionOperator('NumericNotEqualsIfExists'), ConditionOperator('NumericGreaterThan'):
ConditionOperator('NumericLessThanEquals'),
ConditionOperator('NumericGreaterThanEquals'): ConditionOperator('NumericLessThan'),
ConditionOperator('NumericGreaterThanEqualsIfExists'):
ConditionOperator('NumericLessThanIfExists'),
ConditionOperator('NumericGreaterThanIfExists'):
ConditionOperator('NumericLessThanEqualsIfExists'), ConditionOperator('NumericLessThan'):
ConditionOperator('NumericGreaterThanEquals'),
ConditionOperator('NumericLessThanEquals'): ConditionOperator('NumericGreaterThan'),
ConditionOperator('NumericLessThanEqualsIfExists'):
ConditionOperator('NumericGreaterThanIfExists'),
ConditionOperator('NumericLessThanIfExists'):
ConditionOperator('NumericGreaterThanEqualsIfExists'),
ConditionOperator('NumericNotEquals'): ConditionOperator('NumericEquals'),
ConditionOperator('NumericNotEqualsIfExists'):
ConditionOperator('NumericEqualsIfExists'), ConditionOperator('StringEquals'):
ConditionOperator('StringNotEquals'), ConditionOperator('StringEqualsIfExists'):
ConditionOperator('StringNotEqualsIfExists'),
ConditionOperator('StringEqualsIgnoreCase'):
ConditionOperator('StringNotEqualsIgnoreCase'),
ConditionOperator('StringEqualsIgnoreCaseIfExists'):
ConditionOperator('StringNotEqualsIgnoreCaseIfExists'), ConditionOperator('StringLike'):
ConditionOperator('StringNotLike'), ConditionOperator('StringLikeIfExists'):
ConditionOperator('StringNotLikeIfExists'), ConditionOperator('StringNotEquals'):
ConditionOperator('StringEquals'), ConditionOperator('StringNotEqualsIfExists'):
ConditionOperator('StringEqualsIfExists'),
ConditionOperator('StringNotEqualsIgnoreCase'):
ConditionOperator('StringEqualsIgnoreCase'),
ConditionOperator('StringNotEqualsIgnoreCaseIfExists'):
ConditionOperator('StringEqualsIgnoreCaseIfExists'), ConditionOperator('StringNotLike'):
ConditionOperator('StringLike'), ConditionOperator('StringNotLikeIfExists'):
ConditionOperator('StringLikeIfExists')}
30 Chapter 5. Class Reference

PolicyGlass, Release 0.8.0

A list of operators and their opposite.

class RawConditionCollection
A representation of a statement condition.

property conditions: FrozenSet[policyglass.condition.Condition]
Return a list of Condition Shards.

5.8 Understanding Effective Conditions

Policy conditions, when they exist, are always restrictions on the scenarios in which a policy applies. Ev-
ery PolicyShard object will have a EffectiveCondition object, even if the EffectiveCondition has no
inclusions or exclusions specified.

5.8.1 What is an inclusion/exclusion?

An EffectiveCondition inclusion is a Condition which must be true, for a PolicyShard to apply. An
EffectiveCondition exclusion is a Condition which must be false, for a PolicyShard to apply.

>>> from policyglass import PolicyShard, EffectiveAction, Action, EffectiveResource,␣
→˓Resource, EffectivePrincipal, Principal, EffectiveCondition, Condition
>>> effective_condition = EffectiveCondition(
... inclusions=frozenset({
... Condition("aws:PrincipalOrgId", "StringEquals", ["o-123456"]),
... }),
... exclusions=frozenset({
... Condition(key="TestKey", operator="BinaryEquals", values=[
→˓"QmluYXJ5VmFsdWVJbkJhc2U2NA=="])
... }),
...)
>>> policy_shard = PolicyShard(
... effect="Allow",
... effective_action=EffectiveAction(Action("*")),
... effective_resource=EffectiveResource(Resource("*")),
... effective_principal=EffectivePrincipal(Principal("AWS", "*")),
... effective_condition=effective_condition
...)

This effective_condition’s inclusions dictate that for Action, Resource and Principal to be allowed, then
at the time the API call takes place the following be true:

1. aws:PrincipalOrgId must StringEquals a value of o-123456.

2. TestKey must NOT BinaryEquals a value of QmluYXJ5VmFsdWVJbkJhc2U2NA==

5.8. Understanding Effective Conditions 31

PolicyGlass, Release 0.8.0

5.8.2 When would an exclusion occur?

An EffectiveCondition exclusion is quite a rare phenomenon. Normally when Deny PolicyShard conditions
are folded into Allow PolicyShard objects, they are reversed using the reverse attribute.

For example StringNotEquals on a Deny PolicyShard will become StringEquals on an Allow PolicyShard. This
simplifies the intelligibility of the Allow shards significantly.

When a Deny statement has a condition that cannot be reversed (e.g. BinaryEquals for which there is no corresponding
BinaryNotEquals) then the condition must be placed into the exclusions of the effective_condition of the
Allow PolicyShard.

5.9 Understanding Effective Actions

In PolicyGlass we express ARPs (Action Resource policyglass.principal.Principal) as though they are
potentially infinite sets.

In reality they are finite sets because there are only a finite number of allowed actions, resources, or principals. However
because actions are being constantly updated by AWS, and new resources and princiapls are being created all the time,
we here treat them as infinite sets because their extent is unknowable by us when we are parsing the policy.

5.9.1 Components of an EffectiveAction

An EffectiveAction object has two components:

1. inclusion

2. exclusions

The inclusions indicate the Action that this effective action applies to and the exclusions indicate the actions that this
effective action does not apply to.

At its simplest an effective action is just an inclusion, which you can think of as a Venn diagram containing S3:*.

Fig. 1: EffectiveAction without exclusion

Then if you have an exclusion of S3:Get* you can think of this as a hole punched in the Venn diagram.

32 Chapter 5. Class Reference

PolicyGlass, Release 0.8.0

Fig. 2: EffectiveAction with exclusion

The area in the middle indicating that S3:Get* is not included in the effective action.

5.9.2 Difference

The difference between set x and set y is the elements that are contained in set x that are not contained in set y. In
essence it’s a subtraction. Remove the elements in set y from set x and you have the difference.

Simple

Let’s say we calculate the difference between two effective actions like so.

>>> from policyglass import EffectiveAction, Action
>>> x = EffectiveAction(inclusion=Action("S3:*"))
>>> y = EffectiveAction(inclusion=Action("S3:Get*"))
>>> x.difference(y)
[EffectiveAction(inclusion=Action('S3:*'), exclusions=frozenset({Action('S3:Get*')}))]

The result is that the inclusion from y is added to the exclusions of x.

• S3:* is the inclusion from x

• S3:Get* is the inclusion from y

The inclusion from x is added as an exclusion of y is because our Actions are essentially infinite sets. The wildcard at
the end of S3:* could extend to an infinitely long string for all we know, so we can’t create an Action that expresses
S3:* but not S3:Get* so we must add it as an exclusion in an EffectiveAction.

This is the reason EffectiveAction s exist, so we can express the intersection of the complement of ininite set B
with inifite set A.

5.9. Understanding Effective Actions 33

PolicyGlass, Release 0.8.0

Fig. 3: Simple Difference

Complex

Let’s say we have two effective actions we want to diff. One is just S3:* and the other is S3:Get* except for
S3:GetObject. To diff these we want to subtract S3:Get* from S3:* but leave S3:GetObject in place.

>>> from policyglass import EffectiveAction, Action
>>> x = EffectiveAction(inclusion=Action("S3:*"))
>>> y = EffectiveAction(inclusion=Action("S3:Get*"), exclusions=frozenset({Action(
→˓"S3:GetObject")}))
>>> print(x.difference(y))
[EffectiveAction(inclusion=Action('S3:*'), exclusions=frozenset({Action('S3:Get*')})),
EffectiveAction(inclusion=Action('S3:GetObject'), exclusions=frozenset())]

Let’s unpack what happened here.

1. We added the inclusion (S3:get*) from y to the exclusions of x

2. We returned a new effective action that is just S3:GetObject

• S3:* is our inclusion from x

• S3:Get* is our inclusion from y

• S3:GetObject is our exclusion from y

In the above Venn diagram we’re showing that the difference between the two effective actions is to include S3:*
except S3:Get* but still include S3:GetObject. We can’t have an inclusion inside an exclusion so we represent this
by adding another effective action object to represent the inclusion.

Outputting two effective actions makes a list of PolicyShard objects much easier to understand because you will end
up with two shards (one for each effective action) rather than one super hard to understand shard that has an action
inclusion inside an action exclusion inside an action inclusion.

Remember that the exclusions in an EffectiveAction are negations, they are holes punched in what’s allowed. As a
result, what is in the exclusion of y should not be removed from x because it’s explicitly not part of y.

Because we can’t express the fact that we want to exclude B and C but include A in our result, we have to return two
separate EffectiveAction s, one which includes A but the entirety of B, and another that just includes D.

34 Chapter 5. Class Reference

PolicyGlass, Release 0.8.0

Fig. 4: Complex Difference (theoretical)

Fig. 5: Complex Difference (actual output)

5.9. Understanding Effective Actions 35

PolicyGlass, Release 0.8.0

5.10 Understanding Policy Shards

5.10.1 Dedupe & Merge

PolicyShard objects need to go through two phases to correct their sizes.

1. Dedupe using dedupe_policy_shard_subsets()

2. Merge using dedupe_policy_shards()

The first collapses all PolicyShards which are subsets of each other into each other, in other words eliminating all
smaller PolicyShards that can fit into bigger PolicyShards.

The second reverses that where necessary, identifying shards that are not subsets of each other but nonetheless have
some intersection and therefore duplicate the permissions space.

When does a PolicyShard intesect without being a subset?

This is a departure from EffectiveARPs (Action, Resource, Principal) objects which by contrast cannot intersect without
being subsets.

Let’s consider this scenario

>>> from policyglass import PolicyShard
>>> from policyglass.action import Action, EffectiveAction
>>> from policyglass.condition import Condition, EffectiveCondition
>>> from policyglass.principal import EffectivePrincipal, Principal
>>> from policyglass.resource import EffectiveResource, Resource
>>> shard_a = PolicyShard(
... effect="Allow",
... effective_action=EffectiveAction(inclusion=Action("s3:*"), exclusions=frozenset(
→˓{Action("s3:PutObject")})),
... effective_resource=EffectiveResource(inclusion=Resource("*")),
... effective_principal=EffectivePrincipal(inclusion=Principal(type="AWS", value="*
→˓")),
... effective_condition=EffectiveCondition(frozenset(
... {Condition(key="aws:PrincipalOrgId", operator="StringNotEquals", values=["o-
→˓123456"])}
...)),
...)
>>> shard_b = PolicyShard(
... effect="Allow",
... effective_action=EffectiveAction(inclusion=Action("s3:*")),
... effective_resource=EffectiveResource(inclusion=Resource("*")),
... effective_principal=EffectivePrincipal(inclusion=Principal(type="AWS", value="*
→˓")),
... effective_condition=EffectiveCondition(frozenset(
... {
... Condition(key="aws:PrincipalOrgId", operator="StringNotEquals", values=[
→˓"o-123456"]),
... Condition(key="s3:x-amz-server-side-encryption", operator="StringEquals",
→˓ values=["AES256"]),
... }
...)),
...)

36 Chapter 5. Class Reference

PolicyGlass, Release 0.8.0

Shard A

1. Has a single condition

2. Excludes s3:PutObject

Shard B

1. Has two conditions, one of which is the same as Shard A

2. Does not exclude s3:PutObject

This means that.

1. Because Shard A and Shard B both have conditions they can never be considered subsets of one another even
during the decomposition process

2. They do intersect because every part of s3:* apart from s3:PutObject is less restrictively allowed by Shard A

3. We want to reduce the scope of Shard B to just s3:PutObject

To do this we use dedupe_policy_shards()

>>> from policyglass.policy_shard import dedupe_policy_shards
>>> shard_b_delineated, shard_a_delineated = dedupe_policy_shards([shard_a, shard_b])
>>> assert shard_a_delineated == PolicyShard(
... effect='Allow',
... effective_action=EffectiveAction(inclusion=Action('s3:*'), exclusions=frozenset(
→˓{Action('s3:PutObject')})),
... effective_resource=EffectiveResource(inclusion=Resource('*')),
... effective_principal=EffectivePrincipal(inclusion=Principal(type='AWS', value='*
→˓')),
... effective_condition=EffectiveCondition(frozenset(
... {Condition(key='aws:PrincipalOrgId', operator='StringNotEquals', values=['o-
→˓123456'])}
...)),
...)
>>> assert shard_b_delineated == PolicyShard(
... effect='Allow',
... effective_action=EffectiveAction(inclusion=Action('s3:PutObject')),
... effective_resource=EffectiveResource(inclusion=Resource('*')),
... effective_principal=EffectivePrincipal(inclusion=Principal(type='AWS', value='*
→˓')),
... effective_condition=EffectiveCondition(frozenset({
... Condition(key='aws:PrincipalOrgId', operator='StringNotEquals', values=['o-
→˓123456']),
... Condition(key='s3:x-amz-server-side-encryption', operator='StringEquals',␣
→˓values=['AES256'])
... })),
...)

You’ll notice that the intersection has been removed, as Shard B now only has s3:PutObject as the rest of s3:* was
covered by Shard A.

5.10. Understanding Policy Shards 37

PolicyGlass, Release 0.8.0

38 Chapter 5. Class Reference

CHAPTER

SIX

POLICYGLASS

Documentation: policyglass.cloudwanderer.io
GitHub: https://github.com/CloudWanderer-io/PolicyGlass

PolicyGlass allows you to analyse one or more AWS policies’ effective permissions in aggregate, by restating them in
the form of PolicyShards which are always Allow, never Deny.

PolicyGlass will always result in only allow PolicyShard objects, no matter how complex the policy. This makes
understanding the effect of your policies programmatically a breeze.

6.1 Try it out

Try out custom policies quickly without installing anything with the PolicyGlass Sandbox.

39

https://pypi.org/project/policyglass/
https://github.com/CloudWanderer-io/PolicyGlass/actions?query=branch%3Amain
https://www.cloudwanderer.io/en/latest/?badge=latest
https://policyglass.cloudwanderer.io
https://github.com/CloudWanderer-io/PolicyGlass
https://sandbox.policyglass.cloudwanderer.io
https://sandbox.policyglass.cloudwanderer.io

PolicyGlass, Release 0.8.0

6.2 Installation

pip install policyglass

6.3 Usage

Let’s take two policies, a and b and pit them against each other.

>>> from policyglass import Policy, policy_shards_effect
>>> policy_a = Policy(**{
... "Version": "2012-10-17",
... "Statement": [
... {
... "Effect": "Allow",
... "Action": [
... "s3:*"
...],
... "Resource": "*"
... }
...]
... })
>>> policy_b = Policy(**{
... "Version": "2012-10-17",
... "Statement": [
... {
... "Effect": "Deny",
... "Action": [
... "s3:*"
...],
... "Resource": "arn:aws:s3:::examplebucket/*"
... }
...]
... })
>>> policy_shards = [*policy_a.policy_shards, *policy_b.policy_shards]
>>> effect = policy_shards_effect(policy_shards)
>>> effect
[PolicyShard(effect='Allow',

effective_action=EffectiveAction(inclusion=Action('s3:*'),
exclusions=frozenset()),

effective_resource=EffectiveResource(inclusion=Resource('*'),
exclusions=frozenset({Resource('arn:aws:s3:::examplebucket/*')})),

effective_principal=EffectivePrincipal(inclusion=Principal(type='AWS', value='*'),
exclusions=frozenset()),

effective_condition=EffectiveCondition(inclusions=frozenset(),␣
→˓exclusions=frozenset()))]

Two policies, two statements, resulting in a single allow PolicyShard. More complex policies will result in multiple
shards, but they will always be allows, no matter how complex the policy.

You can also make them human readable!

40 Chapter 6. PolicyGlass

PolicyGlass, Release 0.8.0

>>> from policyglass import explain_policy_shards
>>> explain_policy_shards(effect)
['Allow action s3:* on resource * (except for arn:aws:s3:::examplebucket/*) with␣
→˓principal AWS *.']

6.3. Usage 41

PolicyGlass, Release 0.8.0

42 Chapter 6. PolicyGlass

PYTHON MODULE INDEX

p
policyglass.action, 25
policyglass.condition, 27
policyglass.policy, 17
policyglass.policy_shard, 18
policyglass.principal, 26
policyglass.resource, 25
policyglass.statement, 23

43

PolicyGlass, Release 0.8.0

44 Python Module Index

INDEX

Symbols
__init__() (Condition method), 27
__init__() (EffectiveCondition method), 28
__init__() (PolicyShard method), 18
__init__() (Principal method), 26

A
account_id (Principal property), 26
Action (class in policyglass.action), 25
action (Statement attribute), 24
alias_generator() (Statement.Config method), 24
arn_elements (Principal property), 26
arn_elements (Resource property), 25

C
Condition (class in policyglass.condition), 27
condition (Statement attribute), 24
ConditionKey (class in policyglass.condition), 28
ConditionOperator (class in policyglass.condition), 28
conditions (RawConditionCollection property), 31
ConditionValue (class in policyglass.condition), 28

D
dedupe_policy_shard_subsets() (in module policy-

glass.policy_shard), 20
dedupe_policy_shards() (in module policy-

glass.policy_shard), 20
dict() (EffectiveCondition method), 28
dict() (PolicyShard method), 19
difference() (PolicyShard method), 19

E
Effect (class in policyglass.statement), 23
effect (PolicyShard attribute), 19
effect (Statement attribute), 24
effective_action (PolicyShard attribute), 19
effective_condition (PolicyShard attribute), 19
effective_principal (PolicyShard attribute), 19
effective_resource (PolicyShard attribute), 19
EffectiveAction (class in policyglass.action), 25
EffectiveCondition (class in policyglass.condition),

28

EffectivePrincipal (class in policyglass.principal),
26

EffectiveResource (class in policyglass.resource), 25
ensure_action_list() (Statement class method), 24
ensure_condition_value_list() (Statement class

method), 24
ensure_principal_dict() (Statement class method),

24
ensure_resource_list() (Statement class method),

24
exclusions (EffectiveAction attribute), 25
exclusions (EffectiveCondition attribute), 28
exclusions (EffectivePrincipal attribute), 26
exclusions (EffectiveResource attribute), 25
explain (PolicyShard property), 19
explain_policy_shards() (in module policy-

glass.policy_shard), 20

F
factory() (Condition class method), 27

I
inclusion (EffectiveAction attribute), 25
inclusion (EffectivePrincipal attribute), 26
inclusion (EffectiveResource attribute), 25
inclusions (EffectiveCondition attribute), 28
intersection() (EffectiveCondition method), 29
intersection() (PolicyShard method), 19
is_account (Principal property), 26
issubset() (Action method), 25
issubset() (PolicyShard method), 20
issubset() (Principal method), 26
issubset() (Resource method), 25

J
json_encoders (PolicyShard.Config attribute), 18

K
key (Condition attribute), 27

M
module

45

PolicyGlass, Release 0.8.0

policyglass.action, 25
policyglass.condition, 27
policyglass.policy, 17
policyglass.policy_shard, 18
policyglass.principal, 26
policyglass.resource, 25
policyglass.statement, 23

N
not_action (Statement attribute), 24
not_principal (Statement attribute), 24
not_resource (Statement attribute), 24

O
operator (Condition attribute), 27
OPERATOR_REVERSAL_INDEX (in module policy-

glass.condition), 29

P
Policy (class in policyglass.policy), 17
policy_json() (Policy method), 17
policy_json() (Statement method), 24
policy_shards (Policy property), 18
policy_shards (Statement property), 25
policy_shards_effect() (in module policy-

glass.policy_shard), 21
policy_shards_to_json() (in module policy-

glass.policy_shard), 22
policyglass.action

module, 25
policyglass.condition

module, 27
policyglass.policy

module, 17
policyglass.policy_shard

module, 18
policyglass.principal

module, 26
policyglass.resource

module, 25
policyglass.statement

module, 23
PolicyShard (class in policyglass.policy_shard), 18
PolicyShard.Config (class in policy-

glass.policy_shard), 18
Principal (class in policyglass.principal), 26
principal (Statement attribute), 25
PrincipalCollection (class in policyglass.principal),

27
principals (PrincipalCollection property), 27
PrincipalType (class in policyglass.principal), 27
PrincipalValue (class in policyglass.principal), 27

R
RawConditionCollection (class in policy-

glass.condition), 31
Resource (class in policyglass.resource), 25
resource (Statement attribute), 25
reverse (Condition property), 28
reverse (EffectiveCondition property), 29

S
Statement (class in policyglass.statement), 23
statement (Policy attribute), 18
Statement.Config (class in policyglass.statement), 24

T
type (Principal attribute), 27

U
union() (EffectiveCondition method), 29
union() (PolicyShard method), 20

V
value (Principal attribute), 27
values (Condition attribute), 28
version (Policy attribute), 18

46 Index

	Use Cases
	Why do I need PolicyGlass?
	Examples of PolicyShards
	Simple
	De-duplicate
	Deny Not Resource Policy

	Examples of Policy Analysis
	Example Policy
	Understanding a Policy
	Interrogating a Policy
	Checking if Conditions exist

	Class Reference
	Policy
	Policy Shard
	Statement
	Action
	Resource
	Principal
	Condition
	Understanding Effective Conditions
	What is an inclusion/exclusion?
	When would an exclusion occur?

	Understanding Effective Actions
	Components of an EffectiveAction
	Difference
	Simple
	Complex

	Understanding Policy Shards
	Dedupe & Merge
	When does a PolicyShard intesect without being a subset?

	PolicyGlass
	Try it out
	Installation
	Usage

	Python Module Index
	Index

